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A B S T R A C T

The utilization of deep learning for scar segmentation in photographs enables automated and non-contact
quantitative analysis of skin scars. Meanwhile, multi-view photographs are commonly employed to capture the
3D information of scars. In this paper, we propose a two-stage deep learning based segmentation framework
for delineating scars from surrounding skin, leveraging multi-view images to achieve enhanced segmentation
results compared to single-view approaches. In the first stage, a data augmentation method based on 3D
reconstruction and view interpolation is proposed. The generated images are used in a semi-supervised setting
to train a single-view segmentation network. In the second stage, a multi-view co-segmentation network
(MVCSNet) is proposed to exploit the mutual information between views and to further refine the segmentation.
The multi-view feature interaction module (MVFI) uses the prior segmentation results from the first stage,
computes feature similarities across views, and optimizes the features. The proposed method was evaluated on
two multi-view image datasets containing linear scars and patchy scars, respectively. The results show that the
proposed data augmentation method can improve the generalization of the model, particularly for the dataset
with smaller size. Comparative analyses demonstrate the superior performance of MVCSNet over other deep
learning based segmentation or co-segmentation algorithms.
1. Introduction

Scars are the result of the skin’s natural healing process following
injury, characterized by an excessive accumulation of collagen fibers
and alterations in the tissue structure and pigmentation [1]. The quan-
titative assessment of scars is essential in both forensic investigations
and clinical dermatology. In forensics, scar measurements can be used
to assess the severity of human injuries and to infer the injury time
and vulnerant, so as to assist crime investigation and to protect the
legitimate rights and interests of victims [2,3]. In dermatology, scar
measurements can be utilized to monitor the skin healing process
and to evaluate the treatment outcomes [4–6]. Utilizing image-based
quantitative analysis for scar assessment offers a non-invasive approach
that allows for accurate and easily recordable measurement results.
Additionally, the implementation of automatic image segmentation en-
hances the efficiency and objectivity of the analysis process. However,
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due to the varied forms and sizes of scars, automatic analysis of scars
remains a challenging problem. Therefore, this paper aims to develop
an automatic framework for scar image segmentation with improved
accuracy, which facilitates the subsequent quantitative analysis.

Some methods were proposed for the similar task of skin wound
analysis, using either traditional segmentation methods [7–9] or deep
learning frameworks [10–12]. These studies primarily focused on seg-
menting wounds in 2D images captured from a frontal view. However,
since scars and wounds are typically adhered to the curved surfaces
of the human body, a single-view image may not provide sufficient
spatial information. In the absence of specialized equipment, multi-
view photogrammetry [3] can be employed, which involves taking
images of the scar from multiple viewpoints and then reconstructing a
3D model. This not only allows for measurement in 3D space, but also
provides more comprehensive information for segmentation than in the
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single-view setting. Some prior research endeavors have incorporated
multi-view images into the segmentation process. Wannous et al. [13]
conducted skin area segmentation and wound tissue type classification
on individual images, subsequently merging the classification results
based on the reconstructed 3D model. Liu et al. [14] applied the
least squares conformal mapping algorithm to unfold the 3D model
into a 2D image, and then segmented the wound with an interactive
method. Niri et al. [15] proposed a data augmentation method for deep
learning based on the reconstructed 3D wound model. From multi-
view images, the optimal view was selected, and its segmentation
result was projected to other views as ground truth. These studies
showed that information from multi-view images could improve the
segmentation performance, but they each only investigated the multi-
view information from a single perspective. In this paper, we propose a
framework that can take more advantage of the abundant information
available in multi-view images, where both the 3D spatial information
and the inter-image feature resemblance are exploited.

In recent years, medical image segmentation methods based on
convolutional neural networks (CNNs) have been widely studied and
applied [16,17]. UNet [18] is the classic CNN in the field of medical
image segmentation, and many other network structures were proposed
on this basis, with enhanced ability of feature extraction [19,20].
CNNs can achieve high performance with short inference time, which
greatly facilitates practical applications. However, their performance
depends on the quantity and quality of training data. In the case of
insufficient data, it is difficult to obtain a robust model [21]. To address
the issue of poor model generalization caused by insufficient data,
data augmentation techniques are commonly employed to expand the
training dataset. Conventional data augmentation techniques typically
involve random transformations such as rotation, flipping, and contrast
enhancement [22–24]. Additionally, for medical images where manual
labels are unavailable for some data, the semi-supervised learning
strategy can be applied. Usually, a teacher model is first trained with
labeled data, which is then applied on the unlabeled data to generate
pseudo-labels, and finally all the data is mixed to retrain a final
model [25–27]. Therefore, to improve the generalization ability of the
segmentation model, we propose a data augmentation method based on
the reconstructed 3D model, and the semi-supervised learning strategy
is adopted for the augmented data.

Object co-segmentation refers to segmenting objects of the common
category from a set of images. In deep learning based co-segmentation
methods, the deep features are optimized by jointly utilizing the in-
formation from multiple images. For example, SAAB [28] used the
channel-wise attention module, placed in the bottleneck layer of the
network, to select semantically related features from a pair of im-
ages. DOCS [29] used a mutual correlation layer to perform feature
matching to obtain correspondence maps that were fused with other
features to help co-segmentation. COSNet [30] proposed a co-attention
module to compute the attention summaries that encoded the corre-
lations between features. In this paper, we design a multi-view co-
segmentation network (MVCSNet) to achieve consistency optimization
based on feature interactions.

In summary, we are committed to improving CNN-based scar seg-
mentation results by effectively utilizing multi-view image data. We
propose a two-stage framework for scar segmentation. In each stage,
the multi-view images are utilized in different ways. The contributions
of the paper are listed as follows:

• In the first stage, we propose a data augmentation method based
on view interpolation. After 3D reconstruction from multi-view
images, the camera parameters of different views are interpo-
lated. With the resulted new parameters, the 3D model is pro-
jected onto the 2D plane to generate more camera views. Then
the new views are used in a semi-supervised learning setting to
2

further optimize the segmentation network.
Fig. 1. The flowchart of the proposed scar segmentation framework.

Fig. 2. Data augmentation process based on 3D view interpolation.

Fig. 3. 3D reconstruction process based on SfM algorithm.

• In the second stage, we propose a multi-view co-segmentation
network. A multi-view feature interaction (MVFI) module is em-
bedded in the middle of the network for feature optimization
across views. Guided by the prior segmentation results, the MVFI
module captures the category features of each view, and then
performs consistency optimization on features of other views.

• The proposed method is evaluated on two datasets with two
types of scars respectively and achieved superior performance
than some single-view based segmentation methods and some
co-segmentation methods.

2. Methods

Fig. 1 shows the flowchart of the proposed scar segmentation frame-
work. This section first introduces the proposed data augmentation
method based on 3D view interpolation and the semi-supervised learn-
ing strategy for the first-stage single-view segmentation, then intro-
duces the overall structure of the MVCSNet and the proposed MVFI
module for the second-stage multi-view co-segmentation, and finally
gives the loss function used.

2.1. Data augmentation based on 3D view interpolation

The proposed data augmentation process is an offline data aug-
mentation method. As shown in Fig. 2, first, we use the SfM [31]
algorithm to perform 3D reconstruction on multi-view images to obtain
3D models and camera parameters for each view. Then, we interpolate
the sequence of camera parameters. Finally, the interpolated camera
parameters are applied to the 3D model to generate new 2D camera
views. The proposed data augmentation method not only increases the
amount of training data, but also improves the ability of the model to
perceive objects from different views.

The SfM [31] is a prevalent algorithm for 3D reconstruction based
on multi-view images. As shown in Fig. 3, the overall process of SfM
mainly includes feature extraction, feature matching, sparse reconstruc-
tion, dense reconstruction, mesh reconstruction, and texture mapping.

Besides the 3D model, the camera parameters corresponding to
each view, including intrinsic and extrinsic ones, can be estimated by
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Table 1
Size of the dataset.
Numbers Linear scar dataset Patchy scar dataset

fold1 fold2 fold3 fold4 fold5 fold1 fold2 fold3

Original images 149 148 149 149 149 52 54 53
Scar samples 24 26 27 24 23 6 5 7
Generated images 226 256 234 190 226 47 67 58
the SfM algorithm. The extrinsic camera parameters are the rotation
and translation of each viewpoint. We propose to interpolate these
parameters to generate new viewpoints. The 3D rotation parameters
of the 𝑖th view can be represented by a quaternion, which is defined as

𝑞𝑖 = [cos
𝜃𝑖
2
, 𝑢𝑖𝑥 sin

𝜃𝑖
2
, 𝑢𝑖𝑦 sin

𝜃𝑖
2
, 𝑢𝑖𝑧 sin

𝜃𝑖
2
], 𝑖 = 1, 2,… , 𝑁 (1)

where 𝑢𝑖 = [𝑢𝑖𝑥, 𝑢𝑖𝑦, 𝑢𝑖𝑧] represents the unit-length rotation axis, and 𝜃𝑖
represents the rotation angle. 𝑁 represents the total number of views.
Quaternions can be interconverted with rotation matrices.

Assuming there are two views with quaternions 𝑞𝑛 and 𝑞𝑛+1, and
translation vectors 𝒕𝑛 and 𝒕𝑛+1, linear interpolation can be used to obtain
the parameter of a new viewpoint as follows.

𝑞𝑛𝜆 = (1 − 𝜆)𝑞𝑛 + 𝜆𝑞𝑛+1 (2)

𝒕𝑛𝜆 = (1 − 𝜆)𝒕𝑛 + 𝜆𝒕𝑛+1 (3)

where 𝜆 ∈ (0, 1) is the interpolation ratio. For each new viewpoint, its
rotation matrix 𝑹𝑛𝜆 is calculated from the generated 𝑞𝑛𝜆.

𝑹𝑛𝜆 =
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(4)

where 𝑞0, 𝑞1, 𝑞2, 𝑞3 are the four elements in 𝑞𝑛𝜆. The new rotation matrix
and translation vector are used to project the 3D model into a new
generated image. Specifically, the texture of the 3D model is mapped to
a 2D plane by mapping the 3D coordinates [𝑥, 𝑦, 𝑧] to the 2D coordinates
[𝑥′, 𝑦′] by

[𝑥′, 𝑦′] = 𝐾[𝑹|𝒕][𝑥, 𝑦, 𝑧] (5)

where 𝐾 represents the matrix of intrinsic camera parameters, and [𝑹|𝒕]
represents the matrix of extrinsic camera parameters.

In this paper, we insert a new viewpoint between two consecutive
views using 𝜆 = 0.5. Besides, the parameters of each original view are
also used to generate a projection. This results in a image that is slightly
different than the original image, and can be seen as a disturbance of
the data. Therefore, the intended number of generated images are twice
of the original ones. However, for some samples with few views or poor
image quality, the generated images may exhibit reconstruction errors,
and in some cases generated views may only contain a small part of the
scar. In such scenarios, the generated images are discarded. Therefore
the amount of augmented images actually used is smaller. The number
of generated images included in the augmented dataset is shown in
Table 1.

2.2. Semi-supervised learning with augmented data

As ground truth labels are unavailable for the generated images,
we adopt the self-training strategy [25], which is commonly used in
semi-supervised learning, for the first-stage single-view segmentation
network. As shown in Fig. 4, first the segmentation network is trained
on the original data. Then the generated images are fed into the trained
network, and pseudo-labels are obtained. Finally the generated images
with pseudo-labels and the original data with ground truth labels are
mixed to form the augmented dataset, with which the segmentation
network is retrained.

A ResUNet [32] is used as the single-view segmentation network.
The encoder is the ResNet34 [33] model pre-trained on ImageNet, and
the decoder consists of convolution blocks and upsampling.
3

Fig. 4. Steps of semi-supervised learning with augmented data.

2.3. Multi-view co-segmentation network

After a prior segmentation is obtained by the ResUnet trained with
the augmented data, a multi-view co-segmentation network (MVCSNet)
is constructed to further refine the segmentation by considering the
consistency among multi-view images of the same scar sample. As
shown in Fig. 5, the MVCSNet is an encoder–decoder network with skip
connections. The encoder is modified upon the ResNet34 [33]. Con-
sidering that for thin linear scars and low-contrast patchy scars, detail
information will be lost on low resolution levels, the first maximum
pooling layer is removed. The fourth residual block is also discarded
to keep a high resolution while reducing model complexity. Therefore,
the encoder of MVCSNet downsamples the input image three times.
The decoder includes cascaded convolution and upsampling blocks. The
MVFI module is inserted in the middle of the encoder and decoder.
It uses the prior segmentation results to guide the optimization of
multi-view features.

In the co-segmentation process, different views of each sample are
input into the MVCSNet together, and their segmentation results are
output together. The view dimension and batchsize dimension are
merged before the encoder, to ensure that all views are encoded to-
gether in a batch. The features of each view are split after the encoder,
as they need to be processed separately in the MVFI module. Similar
merging and splitting is performed for the decoder, where all views
are decoded together and then separated for output. Specifically, let the
original input image be 𝐼 ∈ 𝑅𝐵×3×𝑁×𝐻×𝑊 , where 𝐵 is the batchsize, 𝑁
is the number of views, 𝐻 is the image height, and 𝑊 is the width.
𝑋 ∈ 𝑅𝐵𝑁×3×𝐻×𝑊 is the result of view merging on 𝐼 . 𝑋 is fed into the
encoder to obtain a deep feature 𝐹 . View separation is performed on
𝐹 in to obtain 𝐹𝑖 ∈ 𝑅𝐵×𝑐×ℎ×𝑤, 𝑖 = 1⋯𝑁 , where 𝑐, ℎ, and 𝑤 is channel
number, height, and width of the features. The separated feature 𝐹𝑖
is input into the MVFI module to get the optimized features 𝐹 ′

𝑖 ∈
𝑅𝐵×𝑐×ℎ×𝑤. Subsequently, 𝐹 ′ ∈ 𝑅𝐵𝑁×𝑐×ℎ×𝑤 is obtained by view merging.
The decoder takes 𝐹 ′ as the input and outputs 𝑂 ∈ 𝑅𝐵𝑁×1×𝐻×𝑊 .
Finally, view separation is performed on 𝑂 to get segmentation results
𝑂𝑖 ∈ 𝑅𝐵×1×𝐻×𝑊 for each view in the batch. Note that 𝑁 can be different
for each scar sample, and therefore the input size of the encoder and
decoder are designed to be variable.

2.4. Multi-view feature interaction module

This subsection introduces the multi-view feature interaction
(MVFI) model used in the MVCSNet. In MVFI, 𝐹 , the features from each
𝑖
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Fig. 5. Multi-view co-segmentation network.
Fig. 6. Multi-view feature interaction module.

view, with its segmentation prior 𝑃𝑖, is used to optimize the features
from all other views. Correspondingly, the features from each view are
optimized multiple times, and these optimized features are fused to give
the output feature for this view. Without loss of generality, Fig. 6 shows
the structure where 𝐹1 and 𝑃1 are used as the reference to optimize all
other views.

The cosine similarity defined in (6) is used in MVFI to measure the
consistency between features from different views.

cos_similarity =
𝑔𝑥 ⋅ 𝑔𝑦

‖𝑔𝑥‖ ‖𝑔𝑦‖
(6)

where 𝑔𝑥 and 𝑔𝑦 are two feature vectors.
As in Fig. 6, assuming the first view as the reference, the prior

segmentation result 𝑃1, is down-sampled to the size of 𝐹1, which is
𝐵 × 𝑐 × ℎ ×𝑤, and then multiplied with 𝐹1 to obtain a masked feature.
Then global average pooling followed by cascaded fully connected
layers is used to obtain 𝑔1 ∈ 𝑅𝐵×𝑐×1×1. Since the background is removed
by masking, 𝑔1 represents the category feature of the targeted scar
area. Based on this, the similarity feature map 𝑀1𝑗 is obtained by
calculating the cosine similarity between 𝑔1 and each pixel position of
𝐹𝑗 , 𝑗 = 2⋯𝑁 .

𝑀1𝑗 (𝑝, 𝑞) = cos_similarity(𝑔1, 𝐹𝑗 (𝑝, 𝑞)), 𝑗 = 2,… , 𝑁 (7)

𝐹𝑗 , after some regular trainable processing, is multiplied by its corre-
sponding similarity matrix 𝑀1𝑗 , so that the high similarity parts of the
feature are boosted and the low similarity parts are suppressed. Finally,
the category feature 𝑔1, which contains important global semantic
information, is used again to further optimize the features. Specifically,
after upsampling, it is fused with the features through concatenation
and 1 × 1 convolution. The final output 𝑓1𝑗 is restored to the same size
as the input 𝐹𝑗 .

Such operation is repeated using other 𝐹𝑖 and 𝑃𝑖 as references,
respectively. Finally, a set of features 𝑓𝑖𝑗 , 𝑖, 𝑗 = 1⋯𝑁, 𝑖 ≠ 𝑗 can be
obtained, which represents the optimized output of the 𝑗th view, where
the 𝑖th view is used as a reference. For each view, the features resulted
4

from optimization by all other views are then summed to get the final
output features of MVFI.

𝐹 ′
𝑗 =

𝑁
∑

𝑖=1,𝑖≠𝑗
𝑓𝑖𝑗 (8)

In MVFI, each view uses the rest 𝑁 − 1 views for consistency
optimization, and finally the 𝑁 − 1 optimization results are integrated.
Such an ensemble operation can reduce the impact of errors in prior
segmentation and improve the reliability of feature optimization.

2.5. Loss function

For both first-stage single-view segmentation and second-stage
multi-view segmentation, we adopt the joint loss function of focal
loss [34] and Dice loss.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑓𝑜𝑐𝑎𝑙 + 𝐿𝐷𝑖𝑐𝑒 (9)

The focal loss [34] function is defined as

𝐿𝑓𝑜𝑐𝑎𝑙 = −
∑

𝑖
(1 − 𝑝)𝛾𝑦𝑖 log(𝑝𝑖) − 𝑝𝑖

𝛾 (1 − 𝑦𝑖) log(1 − 𝑝𝑖) (10)

where 𝑝𝑖 is the predicted value of the 𝑖th pixel, 𝑦𝑖 is the ground truth
value of the 𝑖th pixel, and 𝛾 is the adjustment factor, which is set to 2
in our experiments. The Dice loss function is defined as

𝐿𝐷𝑖𝑐𝑒 = 1 −
2
∑

𝑖 𝑝𝑖𝑦𝑖 + 𝜖
∑

𝑖 𝑝𝑖
2 +

∑

𝑖 𝑦
2
𝑖 + 𝜖

(11)

where 𝜖 is a small smoothing factor.

3. Experimental settings

3.1. Datasets

The data used in the experiments are clinical data collected at the
Academy of Forensic Science, Ministry of Justice, Shanghai, China. The
collection and analysis of image data were approved by the Institutional
Review Board of the Academy of Forensic Science. A smartphone
was used to collect 744 images from 130 linear scars samples, and
159 images from 18 patchy scars samples. Each sample had 3 to 10
views. All images were taken by the same device with a resolution of
3456 × 4608. The scar region in each image was manually annotated
by a forensic expert using the LabelMe software [35]. Dense points
were placed along the edges of scars and connected to form a mask
for the scar regions. The linear scars and patchy scars differed greatly
in shape, and therefore they were treated as two independent datasets,
and training and testing are performed separately.

Due to the small amount of data, we use cross-validation in all
experiments. Five-fold cross validation was performed on linear scars
and three-fold cross validation on patchy scars. The amount of data per
fold is shown in Table 1.
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3.2. Implementation details

The segmentation experiments were performed on the public plat-
form PyTorch with NIVIDIA GeForce RTX3090 graphics card and 24G
video memory. The implementation of SfM [31] algorithm was based
on Colmap [36] and OpenMVS [37] open source library.

The hyperparameter settings for network training were as follows.
For ResUNet, the number of epochs was set to 100, and the batchsize
was set to 4. Poly learning rate policy was adopted, and the initial
learning rate is 0.01. The optimizer used was SGD with a momentum of
0.9 and weight decay of 0.0001. For MVCSNet, the number of epochs
was set to 60, and the batchsize was set to 1 due to restraints of
computational complexity. Other settings were the same.

In 3D reconstruction by SfM, the input images were downsampled
to 864 × 1152. The input to the networks was rescaled to 512 × 512. In
order to improve the robustness of the model, online data enhancement
was employed during training, including random flipping and rotation.
In the multi-view co-segmentation experiment, too many views would
result in a huge amount of calculation. Therefore, the maximum num-
ber of views was set to 8. If a sample had more than 8 views, it was
split into multiple samples.

3.3. Evaluation metrics

For the image segmentation task, we adopt several commonly used
metrics [12] for model evaluation, namely Intersection over Union
(IoU), Dice Similarity Coefficient (DSC), and Sensitivity (Sen), calcu-
lated as follows:

𝐷𝑆𝐶 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(12)

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(13)

𝑆𝑒𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(14)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 are number of true positive, true negative,
false positive and false negative pixels, respectively.

Statistical analysis with paired student’s t-test is performed on all
indices, and 𝑝 < 0.05 indicates statistically significant difference.

4. Results

4.1. Results of data augmentation

Fig. 7 shows four examples of data augmentation based on 3D view
interpolation, including two linear scars and two patchy scars. The
reconstructed 3D models, and all the original images and the generated
projected images for each sample are listed. It can be observed that
the 3D models can clearly reflect the 3D information of these scars,
including their spatial position, geometric shape, and texture attributes.
Moreover, the generated images can show the scars from different
angles and distances.

To show the effectiveness of the proposed data augmentation and
semi-supervised learning, we compare our first-stage segmentation re-
sults with that obtained using original images, and that obtained using
offline random transformation (ORT) method. ORT refers to performing
random flipping and rotation on the original image and masks to
generate more supervised data. The number of generated images are set
to the same. Table 2 lists the results of comparative experiments on data
augmentation methods. Compared to training using the original images,
the proposed data augmentation improves the IoU, DSC, and Sen by
1.97%, 1.37% and 1.28% respectively for linear scars, and by 5.24%,
3.97% and 4.21% respectively for patchy scars. The improvement of
average indices is more significant for patchy scars with small sample
size. Moreover, for patch scars, the standard deviation values are
more significantly reduced. This indicates that, with the proposed data
5

augmentation, the network performs consistently well for all samples
across different folds. Therefore, the comparisons in both mean and
standard deviation indicate improved generalization, especially for the
dataset with smaller size. Although ORT can improve the performance
of the network to a certain extent, it does not perform well on all folds
of the patchy scars, still resulting in quite large variances. Statistical
tests also show significant difference between indices of the proposed
method and the other two, except for only one case indicated by ‘‘*’’
in Table 2.

4.2. Ablation study of MVCSNet

Ablation studies were conducted to show that the designs of MVC-
SNet all benefit the segmentation performance. For the experiments in
this subsection, the output of ResUNet [32] with the proposed data
augmentation method was used as the segmentation prior.

We first performed ablation experiments on the backbone of MVC-
SNet. Results with the ResNet18, the original ResNet34, ResNet34
without the first max pooling layer, ResNet34 without the fourth
residual block, and the proposed modified ResNet34 without the first
max pooling layer and fourth residual block, are listed in Table 3. For
different backbones, the feature maps were interpolated to the same
spatial size before going into the MVFI module. The computational
complexity of these variations of MVCSNet is also compared in terms of
the total number of parameters and floating point operations (FLOPs).
In comparison, with the proposed modified ResNet34 as backbone,
the indices are the highest in all cases with statistical tests show-
ing significant difference. Larger differences are observed for linear
scars, indicating that higher resolution contributes more to detection
of thin structures. For model complexity, removing the maxpooling
layer increases the resolution and therefore largely increases the FLOPs,
while removing the fourth residual block reduces the number of pa-
rameters and slightly reduces the FLOPs. In general, the proposed
modified ResNet34 achieves better segmentation results by preserving
higher resolutions while maintaining decent computational complexity.
In addition, using a lighter ResNet18 encoder can reduce the model
complexity, but its indices are lower than both modified and original
ResNet34. This may due to its weaker ability of feature extraction with
less convolution layers.

Then, to verify the effectiveness of each component in MVCSNet, we
conducted ablation experiments on the MVFI module, the segmentation
prior, and multi-view co-segmentation. The results of these ablation
experiments are listed in Table 4. The baseline in the first row is the
ResUNet structure with the modified ResNet34 as the encoder. When
prior segmentation is used without the MVFI module, it is multiplied to
features of the lowest level. When multi-view segmentation is applied
without the MVFI module, all view images of the same sample are input
in a batch and processed together. When multi-view segmentation is not
applied, images are randomly grouped into batches.

Comparing the first and second rows or the third and fourth rows,
it can be seen that the prior segmentation has a significant impact on
network performance. For linear scars, DSC is increased by 1.75% for
single-view segmentation and 3.91% for multi-view co-segmentation.
For patchy scars, due to the small amount of data, bigger difference
can be observed. After adding prior segmentation, DSC is increased
by 3.83% for single-view segmentation and 16.2% for multi-view co-
segmentation. Comparing the first and third rows, both without the
MVFI module, multi-view co-segmentation results in much worse per-
formance than single-view segmentation. This is because during multi-
view training, multi-view data is packed into samples. Therefore, the
total number of input samples become smaller, and the diversity of data
is far less than that of single-view training. Comparing the second and
fourth rows, after adding the priors but still without the MVFI mod-
ule, multi-view co-segmentation results in comparable performance
with single-view segmentation. This shows that the multi-view co-

segmentation without exploring the consistency information between
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Fig. 7. Examples of data augmentation based on 3D interpolation projection. The first column is the reconstructed 3D models, images in red boxes are the original ones, and
images in green boxes are the generated images.
Table 2
Results of experiments on data augmentation.

Methods Linear scar Patchy scar

IoU (%) DSC (%) Sen (%) IoU (%) DSC (%) Sen (%)

No augmentation 79.76 ± 2.52 88.32 ± 1.77 88.45 ± 1.46 78.09 ± 11.82 86.58 ± 8.74 88.31 ± 7.93
ORT 80.67 ± 2.18 88.96 ± 1.49 88.73 ± 1.88 80.12 ± 10.22 88.36 ± 6.85 90.63 ± 4.79*
Proposed 81.73 ± 2.30 89.69 ± 1.47 89.73 ± 1.79 83.33 ± 3.96 90.55 ± 2.62 92.52 ± 0.37

Except the indices marked with *, all indices of ‘‘No augmentation’’ and ‘‘ORT’’ have statistically significant difference with 𝑝 < 0.05, compared
with the proposed method.
6
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Table 3
Results of ablation experiments on backbones of MVCSNet.

Backbone Linear scar Patchy scar Param FLOPs

IoU (%) Dice (%) Sen (%) IoU (%) Dice (%) Sen (%) (M) (G)

Res18 79.94 ± 2.17 88.51 ± 1.55 88.68 ± 1.91 87.32 ± 1.70 92.92 ± 1.15 94.53 ± 0.27 13.49 51.50
Res34 80.32 ± 1.48 88.84 ± 0.96 89.18 ± 0.90 87.38 ± 1.71 92.95 ± 1.15 94.27 ± 0.67 23.60 70.88
Res34-M1 80.74 ± 1.15 89.10 ± 0.73 90.24 ± 0.83 87.32 ± 1.63 92.92 ± 1.10 94.09 ± 0.78 23.60 184.19
Res34-M2 81.77 ± 1.46 89.73 ± 0.94 90.39 ± 1.44 87.47 ± 1.77 92.99 ± 1.19 94.36 ± 0.45 9.30 63.55
Res34-M 83.07 ± 1.60 90.51 ± 1.01 91.86 ± 0.82 87.52 ± 1.78 93.03 ± 1.20 94.68 ± 0.20 9.30 154.90

es34-M1: modified ResNet34, without the first max pooling layer.
es34-M2: modified ResNet34, without the fourth residual block.
es34-M: modified ResNet34 as proposed, without both the first max pooling layer and the fourth residual block.
ll indices have statistically significant difference with 𝑝 < 0.05, compared with the proposed Res34-M.
able 4
esults of ablation experiments on multi-view components of MVCSNet.
# MVFI Prior Multi-view Linear scar Patchy scar

IoU (%) DSC (%) Sen (%) IoU (%) DSC (%) Sen (%)

1 79.32 ± 2.26 88.01 ± 1.70 89.08 ± 1.00 76.96 ± 10.65 86.25 ± 7.09 91.45 ± 2.14
2 ! 81.82 ± 2.03 89.76 ± 1.30 91.11 ± 1.23 82.55 ± 3.76 90.08 ± 2.49 92.92 ± 0.98
3 ! 76.33 ± 1.82 85.51 ± 1.43 85.61 ± 2.94 62.93 ± 13.95 74.22 ± 11.72 79.00 ± 10.13
4 ! ! 81.34 ± 2.15 89.42 ± 1.37 89.96 ± 1.04 83.08 ± 3.96 90.42 ± 2.62 92.32 ± 0.36
5 ! ! 81.52 ± 1.86 89.56 ± 1.21 90.15 ± 1.36 82.72 ± 3.68 90.19 ± 2.45 92.74 ± 0.11
6 ! ! ! 83.07 ± 1.60 90.51 ± 1.01 91.86 ± 0.82 87.52 ± 1.78 93.03 ± 1.20 94.68 ± 0.20
Fig. 8. Visual comparison of the feature maps of scars. (a) multi-view images (b) feature maps without MVFI module (c) feature maps with MVFI module (d) ground truth.
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able 5
values of ablation experiments in Table 3.

Linear scar Patchy scar

IoU (%) DSC (%) Sen (%) IoU (%) DSC (%) Sen (%)

1 vs. 2 3.34E−05 1.16E−05 7.29E−04 1.53E−04 1.49E−05 1.88E−03
1 vs. 3 3.11E−04 2.71E−03 5.65E−02* 1.29E−16 9.94E−15 1.31E−08
2 vs. 4 7.55E−04 6.60E−04 1.04E−03 5.59E−04 4.98E−03 1.22E−01*
2 vs. 5 9.70E−03 8.35E−03 4.78E−05 8.17E−03 1.81E−02 3.82E−02
3 vs. 4 1.06E−12 1.11E−08 3.08E−04 4.75E−09 5.13E−11 7.11E−10
4 vs. 6 2.92E−05 2.79E−06 7.56E−04 3.60E−07 4.30E−07 9.05E−03
5 vs. 6 5.29E−05 6.64E−04 2.33E−04 2.43E−09 2.98E−09 3.30E−03

indicates no statistically significant difference with 𝑝 > 0.05.

iews, even with the help of prior segmentation, cannot improve the
erformance of the network. Comparing the second and fifth rows, for
ingle-view segmentation, adding the MVFI module results in compa-
able performance. That means feature consistency optimization across
amples is not effective. Comparing the fourth and the sixth rows, the
ffectiveness of the MVFI module for multi-view co-segmentation is
emonstrated. Comparing the fifth and the sixth rows, the results of
VCSNet trained with multi-view data is the best. Compared with the

esults of first-stage segmentation (last row of Table 2), for linear scars,
7

w

fter using MVCSNet for second-stage optimization, the IOU, DSC, and
en indices are improved by 1.34%, 0.82%, and 2.13% respectively. For
atchy scars, the IOU, DSC, and Sen indices are improved by 4.19%,
.48%, and 2.16% respectively.

The p-values of statistical tests for the results in Table 4 are listed
n Table 5. There is statistically significant difference for all cases but
wo. This further proves the effectiveness of all proposed components
n MVCSNet.

Fig. 8 presents the visual comparison between the output features of
VFI module and those without MVFI module. The features input into

he decoder (of size 64 × 64) are compared. As can be seen from Fig. 8,
he MVFI module effectively enhances the feature regions containing
he scars, while suppressing background regions.

Fig. 9 shows the segmentation results of different model variations
n the ablation experiments in Table 4. It can be seen that MVCSNet
as the best segmentation results for scars after adding the proposed
VFI module, prior segmentation, and multi-view co-segmentation.
eanwhile, it can be found that solely incorporating multi-view co-

egmentation or prior segmentation cannot effectively improve the
egmentation results, and sometimes even causes the model to learn
rong information, thereby reducing the performance of the model.
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Fig. 9. Visual comparison of ablation experiments on MVCSNet. (a) multi-view images (b) ground truth (c) prior segmentation (d) single-view segmentation without MVFI (e)
single-view segmentation with prior but without MVFI (f) multi-view co-segmentation without MVFI (g) multi-view co-segmentation with prior but without MVFI (h) single-view
segmentation with MVFI (i) multi-view co-segmentation with MVFI.
Table 6
Results of comparative experiments.

Methods Linear scar Patchy scar Param FLOPs

IoU (%) Dice (%) Sen (%) IoU (%) Dice (%) Sen (%) (M) (G)

UNet [18] 73.65 ± 2.84 83.68 ± 2.28 83.54 ± 3.22 72.31 ± 12.43 82.90 ± 9.15 87.20 ± 3.64 8.64 131.63
SegNet [38] 76.48 ± 1.87 86.25 ± 1.42 87.98 ± 1.74 73.56 ± 10.35 83.30 ± 8.39 85.56 ± 7.56 38.44 75.45
FCN [39] 78.00 ± 2.35 87.10 ± 1.82 87.61 ± 2.06 76.41 ± 8.59 85.92 ± 6.01 89.17 ± 4.34 25.21 82.07
CENet [19] 79.13 ± 2.69 87.91 ± 1.81 89.15 ± 1.95 75.78 ± 14.20 85.09 ± 10.34 91.45 ± 4.21 29.01 71.21
DeepLabv3+ [40] 79.26 ± 2.74 88.06 ± 2.14 89.05 ± 2.27 74.56 ± 14.41 83.73 ± 11.60 86.30 ± 9.47 26.71 109.25
CPFNet [20] 78.80 ± 2.66 87.72 ± 1.84 88.40 ± 1.62 73.04 ± 15.10 82.53 ± 12.28 87.99 ± 8.02 30.65 64.58
PSPNet [41] 77.36 ± 2.65 86.80 ± 1.84 88.22 ± 1.58 73.11 ± 10.65 82.88 ± 9.19 85.45 ± 7.76 27.50 47.07
ResUNet [32] 79.76 ± 2.52 88.32 ± 1.77 88.45 ± 1.46 78.09 ± 11.82 86.58 ± 8.74 88.31 ± 7.93* 21.74 63.85
nnUNet [42] 70.14 ± 2.93 80.72 ± 2.30 85.80 ± 1.85 69.80 ± 9.10 81.09 ± 6.60 87.40 ± 5.58 33.48 460.79
Swin-Unet [43] 42.33 ± 6.15 55.71 ± 6.29 58.11 ± 5.96 62.94 ± 6.46 76.07 ± 4.74 88.47 ± 8.12 27.15 30.87
FANet [12] 80.26 ± 2.46 88.73 ± 1.63 89.21 ± 1.57 76.07 ± 13.29 85.43 ± 9.46 90.03 ± 4.91 22.65 64.27
SAAB [28] 80.49 ± 2.59 88.78 ± 1.74 89.01 ± 1.66 77.64 ± 12.58 86.03 ± 9.74 87.78 ± 7.58* 25.94 63.86
DOCS [29] 80.33 ± 2.96 88.66 ± 2.03 88.82 ± 2.31 78.37 ± 11.48 86.73 ± 8.59 89.53 ± 6.34 22.49 64.23
COSNet [30] 80.28 ± 2.98 88.67 ± 2.04 89.27 ± 2.47 77.35 ± 12.12 86.39 ± 8.43 90.62 ± 5.36 31.44 66.33
First stage 81.73 ± 2.30 89.69 ± 1.47 89.73 ± 1.79 83.33 ± 3.96 90.55 ± 2.62 92.52 ± 0.37 21.74 63.85
MVCSNet 83.07 ± 1.60 90.51 ± 1.01 91.86 ± 0.82 87.52 ± 1.78 93.03 ± 1.20 94.68 ± 0.20 31.04 218.74

Except the indices marked with *, all indices of other methods have statistically significant difference with 𝑝 < 0.05, compared with the proposed MVCSNet.
4.3. Comparison with other methods

We compared the results of MVCSNet with other excellent deep
learning-based single image segmentation algorithms. These networks
8

are all encoder–decoder structures. For fair comparison, except for U-
Net [18], nnUNet [42] and SwinUNet [43], we replaced the feature
encoders of these networks with ResNet34 [33]. In addition, we also
compared with three deep learning-based co-segmentation algorithms,
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Fig. 10. Some qualitative comparison results generated by the proposed MVCSNet, DOCS and SAAB for co-segmenting scars from different parts of the human body.
SAAB [28], DOCS [29] and COSNet [30]. All of them require a pair
of images as inputs. In our experiments, we fed two views of the same
scar sample into these co-segmentation networks at a time.

Table 6 list the comparison results on the linear and patchy datasets.
It can be observed that the proposed MVCSNet outperforms the other
methods in terms of all metrics on both datasets. Especially, for the
patchy scar dataset which has a smaller amount of data and is more
challenging to segment, the IoU, DSC and Sen reach 87.52 ± 1.78%,
93.03 ± 1.20% and 94.68 ± 0.20%, respectively. For linear scars, the
DSC of MVCSNet is at least 1.73% higher than other methods, and for
patchy scars, that is 6.3%. Statistical tests also show significant differ-
ence in almost all cases. The outstanding results can be attributed to
two main factors. Firstly, the data augmentation technique significantly
contributes by enhancing the generalization capabilities of the ResUNet
model, thereby improving the reliability of initial segmentation. Sec-
ondly, the MVFI module can effectively capture scar features from
different views, and enhances regions of features with high similarity
while suppressing those with low similarity through feature consistency
optimization.

The last two columns of Table 6 give the number of network
parameters and FLOPs of all methods, which are commonly used to
measure the complexity of a deep learning model. Since the proposed
MVCSNet uses ResUNet as prior segmentation, the numbers here are the
sum of ResUNet and MVCSNet. The total parameters of the proposed
method is not high, but the amount of calculation is large. This is due
to the removal of the first maxpooling layer of ResNet34, which keeps
the feature maps at a high resolution, and due to the cross-optimization
of features from all views.

Fig. 10 shows the co-segmentation results by the proposed MVC-
SNet, compared with DOCS [29], SAAB [28] and COSNet [30] for two
linear scars and two patchy scars from different parts of the human
body. It can be observed that DOCS and SAAB often obtain more false
negatives for linear scars, and more false positives for patchy scars,
and COSNet results in more false negatives in some cases and more
false positives in others. It can also be observed from the abdomen
scar example that DOCS, SAAB and COSNet have poor recognition
capabilities for objects with large view point changes, while MVCSNet
is more robust to the change of viewpoints.

5. Conclusions and discussions

In this paper, a two-stage scar segmentation method based on
convolutional neural networks is proposed. The multi-view information
is utilized to improve the model performance in each stage, but from
different perspectives. In the first stage, we propose a data augmenta-
tion strategy based on 3D view interpolation. Multi-view images are
used collaboratively to reconstruct a 3D model, from which images
9

of new viewpoints are simulated. These images improve the diver-
sity of data for deep network training, prevent model overfitting and
enhance the generalization ability. In the second stage, we propose
the MVCSNet for multi-view co-segmentation. In MVCSNet, we design
the MVFI module to capture semantic features and achieve multi-view
feature interaction. In the MVFI module, the masked average pooling
operation is applied to obtain the semantic descriptor of each view.
Then the similarity matrices between each semantic descriptor and
multi-view features are calculated and used for semantic level feature
enhancement.

Experiments are performed on two datasets, one with linear scars
and the other with patchy scars. The latter has less samples and greater
variations in shape, size and texture, and thus is more challenging.
The proposed 3D view interpolation obtains data with more diver-
sity than simple flipping and rotation. The comparative experiments
show the effectiveness of the proposed data augmentation method,
especially for patchy scars with a small number of samples, greatly
improving the generalization of the network. Ablation experiments
on the MVCSNet prove the effectiveness of the MVFI module, the
utilization of prior segmentation, and the multi-view co-segmentation
strategy, and show that these components collaborate with each other
and each of them is indispensable. In comparative experiments, we
compared MVCSNet with some existing image segmentation and co-
segmentation networks. The results show that the proposed method
outperforms other related algorithms in all indices. Furthermore, unlike
the compared co-segmentation algorithms which can only take two
views, the MVCSNet can adapt to the input of any number of views, and
can more accurately capture semantic features due to the introduction
of prior segmentation result.

The proposed method offers support for image-based automatic 3D
quantitative analysis of scars. Due to the three-dimensional nature of
scars on the curved surface of human skin, conventional single-view
analysis methods are inadequate for capturing accurate 3D informa-
tion, especially for scars that span body parts, resulting in inaccurate
measurements. Multi-view stereo (MVS) techniques reconstruct the 3D
model of a scar and perform measurement in 3D space. In such settings,
the proposed methods can fully exploit the information contained in
multi-view images and locate the scar in each view more accurately
and consistently. In the future, we will further study the 3D quantitative
analysis of scars based on multi-view images. With multi-view images
as input, quantitative measurements of scars, such as length, area,
tortuosity, will be obtained automatically.
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